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This article describes the results of applying pattern-recognition techniques to
diagnose fault conditions in the pointing system of one of the Deep Space Net-
work’s large antennas, the DSS 13 34-m structure. A previous article described an
experiment whereby a neural network technique was used to identify fault classes
by using data obtained from a simulation model of the DSN 70-m antenna system.
This article describes the extension of these classification techniques to the analysis
of real data from the field. The general architecture and philosophy of an au-
tonomous monitoring paradigm is described and classification results are discussed
and analyzed in this context. Key features of this approach include a probabilistic
time-varying context model, the effective integration of signal processing and sys-
tem identification techniques with pattern-recognition algorithms, and the ability
to calibrate the system given limited amounts of training data. The article reports
recognition accuracies in the 97-98-percent range for the particular fault classes
included in the experiments.
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l. Introduction

This article is intended as an overview of recent research
on how to design a health-monitoring system for the DSN
antennas. In particular, a systems perspective is provided
on how a pattern-recognition component may be embed-
ded within a more standard monitoring architecture. Not
included are particular aspects of related technical top-
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ics such as classifier design, detection of change in a time
series, etc.

The article develops as follows: First, the background
to the problem is outlined. This is followed by a general
discussion of fault diagnosis, with a description of what has
become an evolving design for the autonomous monitoring



system. The conditions for the experiment are described,
as well as how the data were collected and why the faults
were chosen. The final section is a discussion of the ex-
perimental results and the various algorithms that were
run.

Il. Background and Motivation

The facilities of the DSN, such as the large antenna
structures at the Goldstone, Madrid, and Canberra sites,
represent a significant capital investment by NASA and
JPL. These antenna structures are critical to the perfor-
mance of the DSN, as they are potential single points of
failure in end-to-end network operation. Traditionally, rel-
atively low rates of data loss over the years have occurred
due to the efforts of JPL engineering and operations per-
sonnel to ensure that problems have been identified and
corrected quickly. As long as critical missions such as
planetary encounters were of short duration and relatively
sparse on the calendar, such labor-intensive approaches
were feasible. However, the nature of JPL planetary mis-
sions is already changing to involve longer duration plane-
tary encounters such as the Magellan project. In this con-
text, round-the-clock manual supervision of the various an-
tenna structures will not be feasible or economical, hence,
the risk of science data loss will be significantly increased.
Notwithstanding this change in the DSN operational en-
vironment, two other factors independently combine to
strongly support the argument in favor of autonomous
monitoring of DSN antennas. The first factor is the age
of the 70-m antenna systems. The initial projected opera-
tional lifetime of these antennas has long been passed, and
one can reasonably expect that system components will
become more failure-prone as time progresses. The sec-
ond factor is the planned shift in operational frequencies
from X-band (8.45 GHz) to Ka-band (32 GHz); from an
antenna-pointing standpoint, this necessitates much more
precise pointing accuracies than are currently feasible. In
this context, an antenna-monitoring system can, in prin-
ciple, provide much more information than simply setting
off alarms when faults occur. In particular, the monitoring
system can complement existing controllers by providing
on-line information about pointing-system components.

The above arguments in favor of autonomous health
monitoring may be convincing in themselves. However, it
should further be noted that recent advances in both hard-
ware and algorithms are what really make an autonomous
system feasible. Until recently, the computational capabil-
ities required for real-time data acquisition, signal process-
ing, and pattern recognition for this type of problem would
have required large computers at significant cost. A major

goal is to produce a system that can be implemented at low
cost (perhaps on a single board) using conventional soft-
ware such as C. This makes for higher reliability and lower
cost maintenance from an implementation standpoint. In
addition to the recent hardware advances, there has been
a resurgence of interest in pattern-recognition techniques
and applications for autonomous systems over the last few
years, driven largely by the promise of neural network ap-
proaches to the problem. From a development point of
view this is advantageous, as the significant amount of the-
oretical and applications-oriented work being carried out
in other research institutions can be leveraged.

lll. Problem Description: Detecting Failures
in Antenna-Control Assemblies

A. Are Antenna Faults a Problem in the DSN?

The importance of the antennas in terms of DSN op-
eration was decribed in the introduction. One question
that must be asked, however, i1s whether antenna subsys-
tems are prone to failure. Direct evidence is difficult to
acquire since there is no DSN database that tracks equip-
ment outages at the component level. The easiest informa-
tion to obtain is that based on discrepancy reports. There
are limitations on what can be inferred from these data.
In particular, the data outages reported are only a lower
bound on the length of time a particular subsystem (and
thus a whole antenna) is not available to support tracking.
Other inaccuracies can be caused by the reporting mech-
anism where reports written against the antenna system
are due to problems such as wind and snow or procedural
errors, which are of no relevance in determining antenna
system hardware reliability, although they are relevant for
availability.

Nevertheless, one can look at the relative magnitudes of
data outages caused by the different subsystems in a DSN
ground station. Over the period January 1986 to March
1991, 21.9 percent of the total data outage hours (as mea-
sured during scheduled tracks) for the DSN as a whole
were written against the antenna mechanical subsystem
(ANT). The antenna system was the second most likely
culprit in this regard after the DSCC Telemetry Subsys-
tem (DTM), which accounted for 28.2 percent of lost data
hours, with radio frequency interference (RFI) in third
place at 16.3 percent. The top five subsystems account
for over 87.7 percent of the total data hours lost. Data
outage information is summarized in Fig. 1. In absolute
terms, 0.67 percent of all scheduled data hours over the
past 5 years was lost because of problems written against
the antenna mechanical subsystem. From these data, it
seems reasonable to infer that antenna system problems
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are a significant contributor to DSN downtime. More de-
tailed information of this nature needs to be acquired,
such as outage rates for specific antennas, component-level
maintenance information, and so on.

B. Fault Detection and Diagnosis at Present
in the DSN

Typically, a faulty component will manifest itself in
the antenna-pointing system indirectly via a change in
the characteristics of observed sensor points in the control
loop. Because of the nonlinearity and feedback present, di-
rect causal relationships between fault conditions and ob-
served symptoms are difficult to establish. This can make
manual fault diagnosis a time-consuming and inefficient
process. In addition, if a pointing problem occurs while
a spacecraft is being tracked, that antenna is often shut
down and the track is handed over to another antenna,
if possible. Hence, at present, diagnosis often occurs af-
ter the fact, where the original fault conditions may be
difficult to replicate.

IV. Design of a Fault-Diagnosis System
A. Fault-Diaghosis Techniques

There are a variety of technical approaches for build-
ing a fault-diagnosis system. Three such approaches are
considered here: control theory, artificial intelligence, and
pattern recognition. Willsky [1] described some classic
control-theoretic techniques for on-line diagnosis. In gen-
eral, this approach requires a detailed observer model or
filter for each type of postulated fault. This presents a
problem, because constructing the observer models is quite
difficult due to the high order and nonlinearity of the an-
tenna drive system. In addition, the technique should
be adaptive and able to recognize when new faults occur.
These capabilities are difficult to incorporate into the con-
ventional observer models. However, the problems are not
insurmountable, and the control-theory techniques may of-
fer the most straightforward solution for certain classes of
easily identifiable faults.

Artificial-intelligence techniques for fault diagnosis can
be classified into two categories. The first is rule-based ex-
pert systems. As pointed out in [2], systems with temporal
behavior are poorly modeled by the rule-based paradigm.
In addition, there is little in the way of experiential knowl-
edge with which to build a rule base for the problem. The
second category is that of model-based reasoning, where
a high-level qualitative model is built to enable problems
to be solved in a manner similar to reasoning from basic
principles. While this approach holds promise, especially
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where novel faults may be expected to occur, the technol-
ogy Is not yet mature enough for application (see [2] for a
more detailed discussion).

The third general approach is based on pattern recogni-
tion or machine-learning ideas. The idea is simple enough:
Design an algorithm that can learn a model directly from
observing system behavior. A learning approach precludes
the necessity for considerable prior domain knowledge,
which is a characteristic of both the other approaches men-
tioned above. Hence, the system can in some sense be
“bootstrapped” into operation. It is a well-known fact in
pattern recognition, however, that providing the appro-
priate domain knowledge to the learning algorithm (say,
in the form of preprocessing the data) can considerably
improve its performance. Initial investigations bear this
point out, and it appears that a hybrid system, which
uses components of all three approaches described here,
is the most practical and promising avenue. Initial work
has been with the pattern-recognition component of the
model, which is the primary focus of the remainder of this
article.

B. System Design Issues

The approach taken in system health monitoring can be
considered to be a rough engineering analogy to passive
human sensory and perception capabilities. In particu-
lar, there is a hierarchical pattern of information flow, as
the raw time-series data are transformed and abstracted
by various specialized modules, mapped into a categori-
cal representation of variables of interest (such as fault
classes), and finally integrated over time to enable reliable
and robust decision making. This architecture is quite
generic to systems that must passively sense and perceive
their environment in real time, and is a natural choice
based on purely engineering considerations.

Figure 2 shows a diagrammatic representation of infor-
mation flow in the present system. The lower level modules
perform dedicated signal-processing tasks to reduce the
effective dimensionality of the incoming data. The next
level of processing consists of pattern classification oper-
ating at a much slower rate in a lower dimensional space.
In pattern-recognition terms, there is a feature-extraction
stage followed by a probabilistic classifier operating in
a continuous real-time mode. Experiments have striven
to represent the class information by using probabilities
rather than the less informative 1-of-N label information.
In this sense, the output of the pattern-recognition compo-
nent can be viewed as a probabilistic state vector that rep-
resents the system’s best estimate of the state of the sys-
tem at time ¢. The decision making component is isolated



to another level of processing after the pattern-recognition
component. Note that unlike many applications where de-
cision making and pattern recognition are combined via
the use of loss functions, it better serves the purpose here
to defer decision making. The separation of probability es-
timation and decision function allows each component to
be modified independently. This is a very important prac-
tical design consideration, which allows the decision func-
tion to be changed without having to relearn the pattern-
recognition component.

V. The DSS 13 34-m Beam-Waveguide
Antenna Experimentation Testbed

A. Rationale for Experiment

Having reported initial successes on fault classification
by using data from a simulation model (3], the natural
next step was to see if similar success could be achieved
by using actual data from the field. Obtaining real fault
data presents something of a problem, since faults by their
nature are unpredictable. Fortunately, with access to the
new 34-m beam-waveguide (BWG) antenna at DSS 13,
the somewhat bold step of creating faults in the antenna-
pointing system in a controlled manner could be taken.
One realizes immediately the limitations of this approach:

(1) The procedure cannot readily be repeated on oper-
ational antennas, in particular the 70-m antennas.

(2) Only known faults can be simulated, while in a real
system, faults of the unknown variety are of great
interest.

These limitations are discussed in greater detail later.
At this point, it is sufficient to note that despite the limita-
tions, the experiment represents a critical test in demon-
strating that pattern-recognition technology can make a
real contribution to solving the problems of fault diagno-
sis.

B. The System Under Study: The 34-m BWG Antenna
Elevation Axis Drive Assembly

The antenna elevation axis drive assembly is a closed-
loop control system that consists of two 7.5-HP DC mo-
tors, servo amplifiers, cycloid gear reducers, tachometers,
and electronics for signal conditioning and servo compen-
sation. A simplified block diagram of this system is shown
in Fig. 3. A brief description of the system is provided
here. Greater detail is provided in [4].

There are two inputs of interest in the antenna drive
assembly: the rate command 6 and the bias command

Ubias. In Fig. 3, the rate command g is applied by the
antenna servo controller (ASC). (The ASC is the com-
puter that controls the pointing of the antenna.) The rate
command is filtered by the reconstruction filter G, then
applied to the two subsystems labeled G,. The term G,
represents two similar sets of amplifiers, motors, gear re-
ducers, tachometers, and compensation electronics, and
G, is itself a closed-loop system referred to as the rate
loop. Together, these two subsystems drive the antenna
structure.

The remaining block in Fig. 3 is the torque share/bias
regulator G.;. This is a regulator circuit that has two
functions. The first is to share the torque between the
two motors and reduce the effect of parameter variations
between them. The second function is to provide a torque
bias between the two motors. The torque bias is very im-
portant in reducing the nonlinearities and improving gear
reducer stiffness. The torque bias removes backlash and
shifts the operating point of the cycloid gear reducers into
a near-linear, high-stiffness region. The magnitude of the
bias is controlled by the bias command.

C. Description of Measured Faults

Five faults were introduced into the antenna drive as-
sembly, all in the drive electronics. The drive electronics
were identified as the safest, most easily controlled, and
least disruptive location to introduce faults into the drive
assembly. Figure 4 shows a block diagram of one motor,
amplifier, and gearbox set. Four of the faults were in-
troduced into the rate-loop compensation and tachometer
feedback, and the remaining fault was introduced into the
torque share/bias feedback loop. During the measurement
process, an additional fault appeared in the encoder. Since
this was a real fault, it was included as an additional class.
The six classes of failure are described below.

(1) The first fault was a noisy tachometer. A uniformly
distributed, white-noise process was introduced into
the tachometer feedback path of one rate loop, as
shown in Fig. 4. This simulates the wear of the com-
mutator or the tachometer bearings, and is a failure
that commonly occurs in the DSN and degrades an-
tenna pointing.

(2) The second fault was the total loss of one tachome-
ter. A failure such as this is masked during normal
operation because of the interaction of the two rate
loops through the torque share/bias loop, and be-
cause the closed position loop remains stable.

(3) The third fault was the loss of the torque share/bias
feedback to one of the motors. This was imple-
mented by eliminating the signal labeled v in one
of the summing junctions shown in Fig. 4.
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(4) The fourth fault was the elimination of the integrator
in the rate-loop compensation, block G; in Fig. 4.
This effectively changed the rate loop from a Type 1
servo to a Type 0 servo.

(5) The fifth fault was the short circuit of the rate-loop
compensation. Referring to Fig. 4, this was equiva-
lent to setting K, = 1, and 7 = 73 = 0.

(6) The sixth fault was a real encoder failure. The fail-
ure manifests itself as sudden jumps in the measured
elevation angle. The magnitude of the jumps was 10
to 20 mdeg. It is hypothesized that the failure is due
to binding in the encoder mechanism due to unfore-
seen radial loading.

Closer analysis of the data revealed that the encoder
failure fault was infermiitent in nature. Detection and
classification of this fault is not difficult when using a
standard statistical model based on monitoring encoder
deviations from the mean expected value. However, this
article focuses mainly on the pattern-recognition aspect of
the problem. Hence, from this point onwards, only the
persistent classes of faults are discussed.

D. Data Acquisition at DSS 13

Instrumentation was set up at DSS 13 to measure se-
lected digital and analog signals from the elevation axis
antenna drive assembly. These signals were the eleva-
tion encoder, current in each DC motor, bias command,
rate command, the tachometers for each rate loop, and
an average tachometer signal. Also monitored were two
anemometers providing wind speed and direction informa-
-tion. Since wind is a nonstationary disturbance, it is im-
portant to include this measurement. This provides the
environmental context within which nominal performance
must be judged. For example, the antenna pointing perfor-
mance that must be considered nominal subject to a gusty
30-mph wind could be the same as the performance during
a calm day with degradation due to a drive fault. On all
three days of data acquisition described below, the mea-
sured wind speed was less than 5 mph.

Data were collected on three days in January and
February 1991. Nominal performance data were collected
during antenna calibrations performed on January 25. The
data were logged while the antenna was boresighting a ra-
dio source. This implies that while the antenna was track-
ing the radio source, step offsets in elevation and cross-
elevation were periodically introduced.

Data were collected under nominal and induced fault

conditions on February 11 and 22. The data of February 11
were collected during a simulated high-elevation track. A
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rate offset of —1 mdeg per sec was introduced. The faults
were introduced independently. All the data were collected
at elevation angles greater than 60 deg. At elevation angles
less than 60 deg, the encoder failure (described above as
fault 6) occurred. This precluded the possibility of making
any low-elevation measurements.

The data of February 22 were collected while tracking
a rising radio source. Again, the faults were introduced in-
dependently. Boresighting did not occur during the mea-
surement period. All the data were collected at elevation
angles less than 30 deg. Note that all data channels were
sampled at 50 Hz to a resolution of 16 bits.

VL. Results of Pattern-Recognition
Experiments

The focus of this article is primarily on the pattern-
recognition component of the monitoring system design.
As outlined earlier, this component is but part of an overall
hierarchical strategy for autonomous monitoring.

A. Choice of Pattern-Recognition Technique

Statistical pattern-recognition techniques have been
studied since the early 1960s when the availability of com-
puter hardware made it possible to implement computa-
tionally demanding classifier design algorithms. A classi-
fier can be thought of as being very similar to a regres-
sion equation model, except that instead of trying to pre-
dict a real-valued variable, one instead seeks to predict a
categorical variable, where the categories are the class la-
bels. Typically one has a feature space of K variables;
the general idea is to label or partition the K-dimensional
feature-space in such a way that an unlabeled feature vec-
tor or measurement can be assigned a class label. The
standard procedure is to be given a training set of labeled
sample data, namely N feature vectors or measurements
which have class labels attached to them. From the la-
beled training data, one must infer a general relationship
between the K features and the class labels: this relation-
ship forms a decision rule or classifier. Let the class labels
be ¢;, 1 < 7 < m, where m is the number of classes. If
the classifier is to return a class label, ¢;, without any in-
dication as to confidence of the classifier in this decision,
then this is a discrimination problem. Denote the K-fold
feature vector by the vector random variable X. If the
classifier is to produce the output p(c;|z) for each class
and any particular feature z, then this is an estimation
problem that involves multivariate estimation of the class-
feature conditional probability density.



Classifier design techniques for the discrimination and
estimation problems fall into two broad categories: para-
metric and nonparametric. The parametric approach usu-
ally involves an assumption that the class-conditional fea-
ture densities can be modeled as multivariate Gaussian.
Under this assumption the optimal decision boundaries
can be found as a function of the means and covariance
matrix. The problem with this approach is that Gaus-
sian distributions are often not a good model, and accu-
rate estimation of the components of the covariance ma-
trix requires a large amount of data. The nonparametric
approach does not seek a direct parametric form for the
conditional densities. Nearest-neighbor techniques, for ex-
ample, seek to approximate the local value of the density
function as a function of the “neighbors” of that point with
a given class label. Parzen windows use the same notion
of local estimates where the class-probability estimate is
based on the weighted contribution of other data points
of the same class label, by using various kernel functions.
Decision-tree techniques seek the decision boundaries by
partitioning the feature space using hyperplanes parallel
to the feature axis in a hierarchical manner. All these
techniques suffer some drawbacks, such as implementation
complexity (nearest neighbor), poor scaling performance
as a function of feature dimensionality (Parzen windows),
and limited expressive capability (decision trees).

A recent technique that has attracted considerable in-
terest for application to classification problems is that of
feed-forward multilayer neural networks. Internal details
of such models were outlined in a previous article [3] and
some of the details of a particular three-layer network are
reproduced in Appendix A. The network implements a set
of nonlinear equations that models the relationship be-
tween the features and each of the output classes. The net-
work weights play the role of coefficients in the nonlinear
equations, and one can view the internal nodes of the net-
work as implementing basis functions. Miller, Goodman,
and Smyth [5] have shown how the objective function (used
as an error metric to find the optimal set of weights) relates
to maximum-likelihood and maximum a posteriori estima-
tion. Similarly, Gish [6] provides a useful discussion about
maximum-likelihood properties of network-training algo-
rithms and relates network models to standard multivari-
ate logistic regression models. Among the useful properties
of networks are their universal approximation capabilities.
Cybenko [7] and Hornik, Stinchcombe, and White [8] have
shown that a network with a single hidden layer (a layer
of nodes between the input and output) can approximate
any continuous function to any desired degree of accuracy.
This result is more of theoretical interest than of prac-
tical use since it does not prescribe how to find such a
network; nonetheless, it demonstrates the important point

that network models are a very powerful and flexible basis
for approximation.

The problem of network design is then to find a suit-
able architecture (the number of layers in the model, the
type of nonlinearity used) and a good set of weights for
the network. The architecture selection problem is still
largely done in a fairly ad hoc manner. Typically, a net-
work with a single hidden layer is used with roughly twice
as many hidden units (nodes in the hidden layer) as there
are classes. Empirical results indicate that network perfor-
mance is often relatively insensitive to the number of hid-
den units used (provided that one has a reasonable amount
of training data and the number of units is not too small),
which indicates a robustness relative to architecture. The
number of input units and output units is set equal to the
number of features and classes, respectively. Typically, the
node “basis functions” are chosen as sigmoid functions (see
Appendix A), but any smooth differentiable function can
be used as far as the backpropagation training algorithm
is concerned.

One of the key contributions to the resurgent interest
in neural network models in recent years is the backpropa-
gation algorithm [9], which provides an iterative method
for finding a set of network weights that corresponds to a
local maximum of the objective function. The algorithm
is really nothing more than the application of the chain
rule for derivatives applied to a graph structure, coupled
with the notion of gradient descent in weight-space. While
no tractable techniques are known to exist that guarantee
that an optimal or near-optimal solution will be found,
practical experience with the algorithm has by and large
been remarkably successful. Indeed, while the field of neu-
ral networks in general involves a wide variety of biologi-
cally inspired computational models, most of the engineer-
ing applications of neural networks (and especially the suc-
cessful ones) hinge on the ability of the backpropagation
algorithm to find powerful nonlinear models from data [10-
12]. For the experiments described here, an enhancement
to the basic gradient descent technique for finding a good
set of weights was used, namely, conjugate-gradient opti-
mization, which accelerates the convergence to a solution.
More details on this algorithm are presented in [3].

Neural network models offer a powerful new technique
for finding classification and prediction models from data.
Comparative studies in the literature have consistently
shown that network models are as good as, or outperform,
other standard pattern-recognition algorithms [13,14], so
that network models are now often the model! of choice for
nonparametric pattern-recognition problems. The signifi-
cant advantages of a network model are its low complexity
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and speed if implemented in hardware, which is important
in a real-time application such as this. It is worth noting
that multilayer feed-forward network models for classifi-
cation are finding their way into a myriad of applications
in a manner independent of the original biological motiva-
tions for the model. In other words, as an engineering tool,
network models have established themselves in their own
right. The application of these models to antenna fault
classification is decribed below.

B. Feature Selection and Generation

As described earlier, each data set consists of 12 chan-
nels of 16-bit data, sampled at 50 Hz for roughly 5 min for
each fault. Hence, for each fault, in pattern-recognition
terminology, there are 15,000 12-tuple feature vectors.
While this might seem like a large data sample, in ac-
tual fact it is really only a very brief snapshot of antenna
system data.

Using the raw time-series data directly as input to the
classifier is obviously not the best approach to the problem.
A hint can be taken from the way a human would discrim-
inate among the classes by using gross structural features
of the waveform to characterize it. With this in mind,
it was decided that some simple useful features could be
extracted directly from the time-series data. (Such “time-
domain” features were succesfully used in discriminating
fault data from a simulation model of a 70-m antenna [3]).
Generation of these features first involved segmenting each
channel of the time-series data into windows. The win-
dow size was chosen to be of 4-sec duration (200 samples)
to give reasonably accurate estimates of the various fea-
tures. The features consisted of order statistics (such as
the range) and moments (such as the variance) of partic-
ular sensor channels. A set of seven features was selected
which were judged likely to have good predictive power for
the problem: motor current range and variance, counter-
torque range and variance, the range and variance of the
average-tachometer sensor, and the variance of the differ-
ence between the two tachometer sensors. Even though
some of these features are highly correlated, the redun-
dancy is useful to combat any uncorrelated noise that may
be present.

The plots in Figs. 5(a) and (b), 6(a) and (b), and 8
all follow the same convention, where the various param-
eters of interest are plotted versus a window index that
corresponds to 4-sec time increments. One can imagine
the horizontal axis to be a function of time. The cor-
respondence among the faults and various regions of the
axis works as follows: noisy tachometer (1-75), tachome-
ter failure (76-150), bias loss (151-225), integrator short
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circuit (226-300), compensation short (301-375), and nor-
mal (376-450). The entire width of the horizontal axis
corresponds to 30 min worth of data.

Figures 5(a) and (b) show plots of the discrimination
capability of two of these features on data from “day2”
(February 22): the variance of the average tachometer sen-
sor and the motor current variance. Notice that each fea-
ture has the ability to discriminate some of the classes and
not the others. For example, motor current variance can
discriminate the tachometer faults in windows 1 to 150
from the other faults but not from each other, and it can
also discriminate the compensation short fault. Notice also
that in the variance of the average tachometer sensor there
are noise spikes in the data. The motivation for not seek-
ing a completely minimal set of discriminatory features is
to retain some redundancy and, hence, robustness in the
presence of such noise.

An autoregressive (AR) modeling technique was ap-
plied to the motor current sensor. In particular, a vari-
ation of autoregression referred to as ARX was used [15],
where the “X” refers to an exogenous input variable to the
system. The system is modeled by using

p q
y(t) + Yyt —i) =D bjult — j) + e(t),
1=1

i=1
t=1,2,...,N

where y(t) is the motor current, u(t) is the system input
(in this case, the rate command sensor), e(t) is an ad-
ditive white-noise process, and a; and ¥ are the model
coefficients. A model with p = 5 and ¢ = 3 was chosen
since it provided the best trade-off between goodness-of-fit
and model complexity. Note that the more traditional AR
model assumes that the system is driven by a white-noise
process, i.e., the input u(¢) would be replaced by a noise
term in an AR model. A 4-sec window was used to seg-
ment the data and the ARX coefficients were estimated
on a block-by-block basis. For on-line implementation,
a standard recursive estimation scheme can be used. Fig-
ures 6(a) and (b) show the discriminatory capability of the
first and second ARX coefficients as plotted for day?2 data.
Here it is seen that the first coefficient alone is almost suf-
ficient to linearly discriminate among the classes; however,
there is some overlap between the tachometer faults, and
again between tachometer failure and normal conditions.
It is not surprising that the ARX coefficients are useful
discriminants since under appropriate conditions they are
a sufficient statistic for the data, i.e., they represent all



the information in the data. Consequently, one can expect
them to provide more useful information than the simpler
time-domain features.

Analysis of the data revealed that the bias loss and in-
tegrator short-circuit faults were completely indistinguish-
able from the normal case. It was expected that some
variation would be discernible given these faults; however,
it appears that the system is robust enough to withstand
such failures. Hence, the data for these two faults were
relabeled as normal.

C. Multiple-Network Architecture

Experiments were carried out using a hierarchical set of
networks. Specifically, two networks were trained: one on
the time domain, the other on the ARX model features.
Then the outputs of these two networks were fed into a
third “judge” network, which is again trained using the
same class labels as the original data. Figure 7 shows the
overall model. The intuitive notion behind this multiple-
network architecture is that the “judge” network can learn
to discriminate which of the first two specialist networks
are reliable on which classes. In particular, it learns how
to weigh the estimates provided by the first two networks.
A useful analogy might be a manager who has some tech-
nical experts on staff and needs to weigh their opinions
on particular issues, taking care to note the strengths and
weaknesses of each. This approach can be seen as a ver-
sion of the mixture models proposed by Jacobs, Jordan,
Nowlan, and Hinton [16]. One can expect this task de-
composition approach to work in situations where little
gain can be expected from directly combining the features
in the two sets. In another sense this can be viewed as
one large network where subsets of the feature space are
not combined in the early layers to reduce the effect of
wasting network resources. This is a more effective and ef-
ficient method than simply combining all the features into
a single, large, fully connected (between the layers) net-
work, as has been found in numerous large-scale network
applications [17-20].

D. Classification Results

As described earlier, the data were collected at DSS 13
on January 25, February 11, and February 22, 1991. This
section focuses on the data sets obtained on February 11
and 22, referred to as “dayl” and “day2,” respectively {(no
faults were induced on January 25). The goal of the classi-
fication experiment was to see if data from each day could
be used to predict conditions on the other day. Hence,
the methodology can be considered a simple two-way val-
idation test. The results are shown in detail in Table 1.
The results for testing on dayl and day2 imply that the

models were trained on data from day2 and dayl, respec-
tively. Each component network was a three-layer model.
The number of hidden units was fixed at 8 for each of the
time-domain and ARX networks, at 10 for the network us-
ing both sets of features, and the “judge” component of
the multiple-network architecture had 8 hidden units.

On average, the multiple network did better than the
other models, but the difference is slight. Clearly, most
of the useful discrimination ability is in the ARX coeffi-
cients rather than the time-domain features, there being an
8-percent difference in mean classification accuracy be-
tween these two schemes. These results are quite good
if one takes into account that no time correlation is used,
i.e., each classification decision is made independently of
the other. Clearly, it is preferable to have the scheme cor-
relate its decisions in some manner. In effect, one wishes to
model the prior belief that faults are persistent over time
and are not likely to change from one 4-sec window to the
next. A scheme to do this time-dependent decision making
is described in the next section. Note that a popular ap-
proach in sequential pattern-recognition problems of this
nature is to try and estimate the time dependency from
the data. This is usually achieved by providing as inputs
to the model (a network in this case) not only feature and
class labels at the present time, but also the labels and pos-
sibly the features from some window into the past. Such a
scheme is viewed as unnecessary in this application since
it would make the model much more complicated. Fur-
thermore, the time dependence can be modeled directly.
This reinforces the earlier claim that separation of estima-
tion and decision making has beneficial consequences for
applications of this nature.

Figure 8 shows a plot of the accuracy of the various
models as a function of the sample size. For a fixed sam-
ple size k, 50 < k£ < 400; for each model a subsample of
size k was randomly selected from the total sample of size
450 from dayl. For each k, this sampling was repeated 10
times, the classifiers were trained on the random sample,
and their performance was evaluated on the independent
data from day?2 (all 450 samples). Each point on the graph
shows the mean accuracy over 10 such runs. A fixed-size
network architecture was maintained for each of the sam-
ple sizes since little variation in performance was evident
from changing the number of units or layers. The fact
that the estimates show little variation as the sample size
varies is encouraging, since it shows that the classifier de-
sign technique is robust as a function of the amount of
training data available. Note also that the time-domain
classifier is consistently poorer than the others. Indeed,
the ARX model outperforms the single large network for
sample sizes greater than 250, indicating that the large
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network may be overfitting the noise in the data due to its
many degrees of freedom. The multiple-network architec-
ture is consistently better than the other models.

E. Time-Averaged Classification Results

While the ARX model exploits local correlation infor-
mation at the time-series level, it has already been men-
tioned that it would be desirable to incorporate correlation
information on a more global scale, based on the belief that
faults are more likely to persist from one 4-sec window to
the next than they are to change.

A relatively simple delayed-decision component was im-
plemented which takes the product of network outputs for
each class over the current and some past number of out-
puts, 1.e.,

i=M
P(ei)=C ] o™
1=0

where p™(c;) is the estimated probability of class ¢ at time
n, o} is the network output at node ¢ at time n, M is the
“memory,” and C is a constant independent of the class
i. Normalized probability estimates can be obtained by
setting

ng oy P(ei)
Phe) = s e

where m is the number of classes. Appendix B gives a sim-
ple analysis of the behavior of this estimator, in particu-
lar its robustness to random errors with respect to making
classification decisions. Not surprisingly, making the mem-
ory M longer reduces the probability of an incorrect deci-
sion or false alarm due to random noise effects. Figure 9
shows the smoothing effect of using time-correlated infor-
mation in this manner on a test data set, using a memory
of size 5. In the graph at the bottom, the time-correlation
technique results in far less noise in the classification de-
cision than in the other graphs where no memory is used.
In the case of the two multiple networks described in the
last section (using no information about time correlation),
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with 8.22-percent and 6.44-percent error rates, the post-
processing to take time-correlation into account reduces
the error to 2.33 percent and 1.78 percent, respectively.

There is a trade-off in increasing the memory M, in
the sense that a longer memory will lead to longer de-
lays in detecting a transition to a new fault. In fact, in
Fig. 9, most of the errors occur just after fault-transition
boundaries (windows 75, 150, 300, and 375) due to the
effective lag in detecting change. More sophisticated deci-
sion strategies using context-dependent memory, Markov
models, and information from non-neural detectors (such
as monitoring the autoregression error sequence to detect
change) are also being investigated.

Table 2 shows the actual error rates for the various ar-
chitectures using a memory of size 5. There is a universal
improvement in performance except for one run with the
time-domain features, where the smoothing actually made
the results worse as compared with no smoothing. The
other models achieve error rates between 2 and 3 percent.
Table 3 shows the confusion matrix corresponding to the
1.78-percent error rate for the first multiple network in
Table 2. Some tachometer failures are misclassified as
tachometer noise problems. Also there are some false
alarms, two bursts of 8 sec each during the 15 min of
normal data. On closer inspection, both of these 8-sec
bursts occurred on the “fault” boundaries, when the true
class changed from a non-normal to a normal fault, and
as such are artifacts of the 20-sec memory scheme. Such
false alarms during transitions are not nearly as serious as
those that might occur during continuous normal condi-
tions. No such false alarms occurred in the tests described
here.

VII. Conclusion

This article describes an application of neural network
techniques to pattern classification for a real-world fault-
diagnosis task. In particular, the advantages of employing
a modular architecture for this problem have been demon-
strated, where domain knowledge is brought to bear in de-
signing the lower-level signal-processing modules and the
higher-level decision process, and where the task of map-
ping feature values to class labels is assigned to the neural
network model. The initial model proposed was success-
fully validated on field data.
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Table 1. Classification rates on test data sets for classifiers with no time-correlation
information

Percentage correct

Type of network

Test on day?2 Test on dayl Mean
Multiple network 91.78 93.56 92.67
Single large network 90.22 94.00 92.11
ARX model features 91.11 91.78 91.45
Time-domain features 80.00 86.67 83.34

Table 2. Classification rates on test data sets for classiflers using time-correlation
information, with memory set to 5 (20 sec)

Percentage error
Type of network

Test on day?2 Test on dayl Mean
Multiple network 1.78 2.33 2.06
Single large network 3.33 2.33 2.83
ARX model features 3.22 2.33 2.78
Time-domain features 33.44 4.22 18.83

Table 3. Confusion matrix obtained when testing on day1 data set using
time-correlation information, with memory set to 5 (20 sec)

Estimated class

True class
Tachometer Tachometer Compensation

noise failure loss Normal
Tachometer noise 75 0 0 0
Tachometer failure 6 69 0
Compensation loss 4} 0 73 2
Normal 0 2 2 221
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RECEIVER-
EXCITER

ANTENNA
219 %

DMC: DSCC MONITOR AND CONTROL

TXR: TRANSMITTER

FAC: DSCC TECHNICAL FACILITIES

RFt: RADIO FREQUENCY INTERFERENCE
DSCC: DEEP SPACE COMMUNICATIONS COMPLEX

Fig. 1. Telemetry data outages during scheduled tracks, Jan-
uary 1, 1986 to July 31, 1990, by DSN subsystem, expressed as a
percentage of total hours lost. (Total hours lost was 3.08% of the
scheduled support time.)
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Fig. 5. Discrimination capability of (a) variance of the average tachometer sensor, and
(b) motor current variance (day2 data).
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Appendix A
Neural Network Model Description

The following description of an example of a popular
feed-forward multilayer neural network model will famil-
iarize the reader with the general notation and concepts.
This appendix is essentially a repetition of the Appendix
in [3] and is included in order to make the report self-
contained.

Figure A-1 shows an example of a network. The input
nodes are labeled n;, 1 < i < K + 1; the hidden nodes
are labeled h;, 1 < j < H; and the output layers are la-
beled 0;, 1 < k < m. In general, there are K 4+ 1 input
units, where K is the number of features. The extra node
is always in the “on” state, providing a threshold capabil-
ity. Similarly, there are m output nodes, where m is the
number of classes.

The number of hidden units H in the model is chosen
based on rules of thumb and empirical experience. The size
of this hidden layer can influence the classifier performance
in the following manner: Too many hidden units, and the
network overfits the data (i.e., the estimation error will be
large); too few hidden units, and the network is left with
insufficient representational power (i.e., the approximation
error term is large).

Each input unit 7 is connected to each hidden unit j by
a link with weight w;;, and each hidden unit j is connected
to each output unit k£ by a weighted link w;x. Each hid-
den unit calculates a weighted sum and passes the result
through a nonlinear function F{), i.e.,

i=K+1
a(h;) = F( > wijG(“i))

i=1

where a(n;) is the activation of input unit i. Typically,
this is just a linear (scaled) function of the input feature.
A commonly used nonlinear function in the hidden unit
nodes F(z) is the so-called sigmoid function, defined as

1
Fe) = o=

Output unit k calculates a similar weighted sum using
the weights w;z between the jth hidden unit and the kth
output unit, i.e.,
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ar = G(Z wjka(hj))
J

where a; is the activation of the kth output node. The
function G(z) can be chosen as either a linear (e.g., G(z) =
z) or a nonlinear function. For example, for a classification
problem such as that described in this article, the sigmoid
function is used to restrict the range of the output activa-
tions to the range [0, 1].

A classification decision is made by choosing the output
unit with the largest activation for a given set of inputs
(feature values); i.e., choose class k& such that

k = argmax{a;}

The network design problem is then to find the best
set of weights such that a particular objective function is
minimized on the N training data samples. The training
data are in the form of input-output pairs {z;, %}, 1 <
i < N, where z; is a feature vector and y; is the desired
output (for simplicity of notation, assume that there is
just a single output model). Let 9;,({2, z;) be the network
output for a particular set of weights  and input vector
z;. The objective function is typically some metric on
¥ and g;, whose mean value is estimated on the training
data. Such commonly used objective functions include the
mean-squared error

| N 2
Eyse = v Z(ya' - f/i(Q,L'))

and the cross-entropy error

N
1 Yi 1—y
E =-—§ yilog —=—— + (1 — y;)log ————=——
B =N LU ga gy T W T 5

From a maximum-likelihood standpoint, the mean-
squared-error approach assumes that the training data are
perturbed by additive Gaussian noise, while the cross-
entropy function assumes a multinomial distribution on



the class labels. Despite these differences, for classification general family of functions that can be proven to asymp-
problems there appears to be little significant difference totically produce consistent probability estimates. For the
between these objective functions; in fact, as shown in [5], experiments reported in this article the mean-squared er-
these two error functions are the simplest functions in the ror objective function was used.
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Fig. A-1. Example of a three-layer feed-forward neural network.



Appendix B
Error Probability as a Function of Memory Length

A simple model is proposed to determine the effects
of memory length on probability of error when using the
product of output activations over time as a classification
metric. Let n be the number of terms in the product and
n = M + 1, where M is the memory length referred to
in the text. Assume a 2-class problem: this is a worst
case since the multiclass case can be reduced to a 2-class
problem where the noise is malicious in the sense that all
misclassification errors occur in the form of one other par-
ticular class. Let o, be the classifier’s output when class 1
is actually the true class, and let 6; be the output of the
classifier when a noise hit occurs, i.e., the output for class 2
is larger than for class 1, even though class 1 is the true
class. Such noise hits are likely, given the noisy environ-
ment in which the sensors operate. Outputs o, and 69
are defined in a similar manner; for example, one might
have o, = 0.8, 02 = 0.1, 6; = 0.4, and 65 = 0.5. Typi-
cally the network produces output activations where it is
much more confident in its correct decisions than it is in its
mistakes. Note that the simplifying assumption has been
made that the outputs oy, etc., are constant with respect
to time. This makes the model simpler to analyze and
gives a general idea of what is happening. A more sophis-
ticated approach might be to assume that o; is the mean
value of the activation which varies with some deviation

g7.

In the case where class 1 is the true class, for a product
of size n, if k noise hits occur, then the probability estimate
for class 1 will only be greater than class 2 if

1 1 1 1
né_k lOg -0—1 + Ek ]Og a > ni_k log ‘(Z + Ek lOg a
or

n>k(1+7)

where

v = log -?—2/log a
01 2

(¢}

Hence the “error-correction” capability of a memory-based
classifier depends on this parameter v, which typically is
quite small, perhaps about 0.1 in many cases, i.e., the
classifier 1s 10 times more confident in its decisions when
it is correct than when it is incorrect. A value of vy = 1.0
means that there is no difference, and the error-correction
capability is effectively reduced to n/2 for a product of
size n.

Now let p be the probability of such a noise hit. This
parameter p measures the reliability of the classifier and
the robustness of the features to withstand noise in the
data. Assuming that these noise hits are not correlated
(which may not be a realistic assumption in practice, but
the model should be kept simple), then the error probabil-
ity is given by the total number of ways in which at least
n/(1+ 7) errors can occur in a window of size n. This is
simply the sum of binomial terms:

(?)p"(l -p)"

If vy << 1, [{#5] =~ n so that

n
Pe = Z

=351

Pe =P

i.e., the error falls off exponentially as a function of mem-
ory.
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